200=1/2(4x^2)

Simple and best practice solution for 200=1/2(4x^2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 200=1/2(4x^2) equation:



200=1/2(4x^2)
We move all terms to the left:
200-(1/2(4x^2))=0
Domain of the equation: 24x^2)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
-1/24x^2+200=0
We multiply all the terms by the denominator
200*24x^2-1=0
Wy multiply elements
4800x^2-1=0
a = 4800; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·4800·(-1)
Δ = 19200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{19200}=\sqrt{6400*3}=\sqrt{6400}*\sqrt{3}=80\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{3}}{2*4800}=\frac{0-80\sqrt{3}}{9600} =-\frac{80\sqrt{3}}{9600} =-\frac{\sqrt{3}}{120} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{3}}{2*4800}=\frac{0+80\sqrt{3}}{9600} =\frac{80\sqrt{3}}{9600} =\frac{\sqrt{3}}{120} $

See similar equations:

| z+11=3z-31 | | 5b-2+2=-15 | | 12+2x-x=9x=6 | | 2=-8a+2-7a | | -3(x-4)=2(x+4)-7 | | 1/4(2x-4)-1/4x=5 | | 5-11t7=(5-2t) | | 2/3+y=1/9=7/9 | | 14=1+7x+6x | | 6x-10-2x=7 | | -3b-5b=-8 | | (a/2)+10=3a+2 | | 17=8-4a+5 | | -4=-2n+n | | 5+11x=49 | | 7+10x=57 | | 3(x-6)=4x+1 | | -4=-2n=n | | +2x+1=13+3x | | 13x-25+9x+3=77 | | -24=r-4r | | 1-8n-2n=21 | | 2y^-5y=12 | | (9k+3)=-2(k-8) | | 4x-16=96+8x | | (3x-8)-(4x-21)=180 | | -11r+66r=10r | | -200=-10(2+1n) | | -200=-10(2+1n | | -13=6p+7p | | 12x^2-80x+100=0 | | 8m=5m-3 |

Equations solver categories